THE APPLICATION OF XGBOOST CLASSIFICATION FOR FRAUD DETECTION IN CREDIT CARD TRANSACTIONS

Authors

  • Muhamad Fuat Asnawi Universitas Sains Al-Qur'an
  • Nur Fitriyanto Universitas Amikom Yogyakarta
  • M. Agoeng Pamoengkas Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.58641/cest.v3i2.131

Keywords:

Credit card fraud, XGBoost, Machine learning, Imbalanced dataset, SMOTE, Fraud detection

Abstract

Credit card fraud detection remains a critical challenge due to the inherent imbalance in transaction datasets, where fraudulent transactions are significantly fewer than normal ones. This study investigates the application of the XGBoost classification algorithm to address this issue using the publicly available Kaggle Credit Card Fraud Detection dataset. The research incorporates data preprocessing techniques such as normalization and SMOTE to handle the dataset's imbalance. Hyperparameter tuning using GridSearchCV optimizes the model’s parameters, enhancing its performance. The results indicate that the model achieves an Area Under the Curve (AUC) of 0.97, demonstrating its high accuracy in distinguishing between fraudulent and normal transactions. The evaluation metrics reveal an F1-score of 0.77 for fraudulent transactions, showing the model's reasonable effectiveness in detecting fraud. While the model performs exceptionally well in identifying normal transactions, reducing false negatives remains a challenge. This study underscores the potential of combining advanced machine learning techniques with preprocessing and optimization strategies to develop robust fraud detection systems.

References

Afriyie, J. K., Tawiah, K., Pels, W. A., Addai-Henne, S., Dwamena, H. A., Owiredu, E. O., Ayeh, S. A., & Eshun, J. (2023). A supervised machine learning algorithm for detecting and predicting fraud in credit card transactions. Decision Analytics Journal, 6. https://doi.org/10.1016/j.dajour.2023.100163

Ahmad, H., Kasasbeh, B., Aldabaybah, B., & Rawashdeh, E. (2023). Class balancing framework for credit card fraud detection based on clustering and similarity-based selection (SBS). International Journal of Information Technology (Singapore), 15(1), 325–333. https://doi.org/10.1007/s41870-022-00987-w

Alarfaj, F. K., Malik, I., Khan, H. U., Almusallam, N., Ramzan, M., & Ahmed, M. (2022). Credit Card Fraud Detection Using State-of-the-Art Machine Learning and Deep Learning Algorithms. IEEE Access, 10, 39700–39715. https://doi.org/10.1109/ACCESS.2022.3166891

Almazroi, A. A., & Ayub, N. (2023). Online Payment Fraud Detection Model Using Machine Learning Techniques. IEEE Access. https://doi.org/10.1109/ACCESS.2023.0322000

Benchaji, I., Douzi, S., & El Ouahidi, B. (2021). Credit card fraud detection model based on LSTM recurrent neural networks. Journal of Advances in Information Technology, 12(2), 113–118. https://doi.org/10.12720/jait.12.2.113-118

Błaszczyński, J., de Almeida Filho, A. T., Matuszyk, A., Szeląg, M., & Słowiński, R. (2021). Auto loan fraud detection using dominance-based rough set approach versus machine learning methods. Expert Systems with Applications, 163. https://doi.org/10.1016/j.eswa.2020.113740

Chang, V., Minh, L., Doan, T., Stefano, A. Di, Sun, Z., & Fortino, G. (2022). Digital Payment Fraud Detection Methods in digital ages and Industry 4.0. Elsevier, Computers and Electrical Engineering.

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-August-2016, 785–794. https://doi.org/10.1145/2939672.2939785

Cheng, D., Wang, X., Zhang, Y., & Zhang, L. (2022). Graph Neural Network for Fraud Detection via Spatial-Temporal Attention. IEEE Transactions on Knowledge and Data Engineering, 34(8), 3800–3813. https://doi.org/10.1109/TKDE.2020.3025588

Cherif, A., Badhib, A., Ammar, H., Alshehri, S., Kalkatawi, M., & Imine, A. (2023). Credit card fraud detection in the era of disruptive technologies: A systematic review. In Journal of King Saud University - Computer and Information Sciences (Vol. 35, Issue 1, pp. 145–174). King Saud bin Abdulaziz University. https://doi.org/10.1016/j.jksuci.2022.11.008

Dantas, R. M., Firdaus, R., Jaleel, F., Neves Mata, P., Mata, M. N., & Li, G. (2022). Systemic Acquired Critique of Credit Card Deception Exposure through Machine Learning. Journal of Open Innovation: Technology, Market, and Complexity, 8(4). https://doi.org/10.3390/joitmc8040192

Dileep, M. R., Navaneeth, A. V., & Abhishek, M. (2021). A novel approach for credit card fraud detection using decision tree and random forest algorithms. Proceedings of the 3rd International Conference on Intelligent Communication Technologies and Virtual Mobile Networks, ICICV 2021, 1025–1028. https://doi.org/10.1109/ICICV50876.2021.9388431

E, J., T, R., Kharat, R. S., M.R.M, V., Bharathiraja, N., Venkatesan, R., & Marappan, R. (2022). Cybersecurity Enhancement to Detect Credit Card Frauds in Healthcare Using New Machine Learning Strategies. https://doi.org/10.21203/rs.3.rs-2278457/v1

Esenogho, E., Mienye, I. D., Swart, T. G., Aruleba, K., & Obaido, G. (2022). A Neural Network Ensemble with Feature Engineering for Improved Credit Card Fraud Detection. IEEE Access, 10, 16400–16407. https://doi.org/10.1109/ACCESS.2022.3148298

Gupta, P., Varshney, A., Khan, M. R., Ahmed, R., Shuaib, M., & Alam, S. (2022). Unbalanced Credit Card Fraud Detection Data: A Machine Learning-Oriented Comparative Study of Balancing Techniques. Procedia Computer Science, 218, 2575–2584. https://doi.org/10.1016/j.procs.2023.01.231

Hashemi, S. K., Mirtaheri, S. L., & Greco, S. (2023). Fraud Detection in Banking Data by Machine Learning Techniques. IEEE Access, 11, 3034–3043. https://doi.org/10.1109/ACCESS.2022.3232287

Hilal, W., Gadsden, S. A., & Yawney, J. (2022). Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances. In Expert Systems with Applications (Vol. 193). Elsevier Ltd. https://doi.org/10.1016/j.eswa.2021.116429

Khan, S., Alourani, A., Arabia, S., Mishra, B., Ali, A., & Kamal, M. (2022). Developing a Credit Card Fraud Detection Model using Machine Learning Approaches. IJACSA) International Journal of Advanced Computer Science and Applications, 13(3), 2022. www.ijacsa.thesai.org

Kumar, S., Ahmed, R., Bharany, S., Shuaib, M., Ahmad, T., Tag Eldin, E., Rehman, A. U., & Shafiq, M. (2022). Exploitation of Machine Learning Algorithms for Detecting Financial Crimes Based on Customers’ Behavior. Sustainability (Switzerland), 14(21). https://doi.org/10.3390/su142113875

Langevin, A., Cody, T., Adams, S., & Beling, P. (2022). Generative adversarial networks for data augmentation and transfer in credit card fraud detection. Journal of the Operational Research Society, 73(1), 153–180. https://doi.org/10.1080/01605682.2021.1880296

Li, Z., Huang, M., Liu, G., & Jiang, C. (2021). A hybrid method with dynamic weighted entropy for handling the problem of class imbalance with overlap in credit card fraud detection. Expert Systems with Applications, 175. https://doi.org/10.1016/j.eswa.2021.114750

Mehbodniya, A., Alam, I., Pande, S., Neware, R., & Rane, K. P. (2023). Retracted: Financial Fraud Detection in Healthcare Using Machine Learning and Deep Learning Techniques. Security and Communication Networks, 2023, 1–1. https://doi.org/10.1155/2023/9758612

Mishra, K. N., & Pandey, S. C. (2021). Fraud Prediction in Smart Societies Using Logistic Regression and k-fold Machine Learning Techniques. Wireless Personal Communications, 119(2), 1341–1367. https://doi.org/10.1007/s11277-021-08283-9

Raval, J., Bhattacharya, P., Jadav, N. K., Tanwar, S., Sharma, G., Bokoro, P. N., Elmorsy, M., Tolba, A., & Raboaca, M. S. (2023). RaKShA: A Trusted Explainable LSTM Model to Classify Fraud Patterns on Credit Card Transactions. Mathematics, 11(8). https://doi.org/10.3390/math11081901

Salekshahrezaee, Z., Leevy, J. L., & Khoshgoftaar, T. M. (2023). The effect of feature extraction and data sampling on credit card fraud detection. Journal of Big Data, 10(1). https://doi.org/10.1186/s40537-023-00684-w

Sanober, S., Alam, I., Pande, S., Arslan, F., Rane, K. P., Singh, B. K., Khamparia, A., & Shabaz, M. (2021). An Enhanced Secure Deep Learning Algorithm for Fraud Detection in Wireless Communication. Wireless Communications and Mobile Computing, 2021. https://doi.org/10.1155/2021/6079582

Sharma, P., Banerjee, S., Tiwari, D., & Patni, J. C. (2021). Machine learning model for credit card fraud detection-A comparative analysis. International Arab Journal of Information Technology, 18(6), 789–796. https://doi.org/10.34028/iajit/18/6/6

Singh, A., Jain, A., & Biable, S. E. (2022). Financial Fraud Detection Approach Based on Firefly Optimization Algorithm and Support Vector Machine. Applied Computational Intelligence and Soft Computing, 2022. https://doi.org/10.1155/2022/1468015

Singh, A., Ranjan, R. K., & Tiwari, A. (2022). Credit Card Fraud Detection under Extreme Imbalanced Data: A Comparative Study of Data-level Algorithms. Journal of Experimental and Theoretical Artificial Intelligence, 34(4), 571–598. https://doi.org/10.1080/0952813X.2021.1907795

Tanouz, D., Subramanian, R. R., Eswar, D., Reddy, G. V. P., Kumar, A. R., & Praneeth, C. H. V. N. M. (2021). Credit card fraud detection using machine learning. Proceedings - 5th International Conference on Intelligent Computing and Control Systems, ICICCS 2021, 967–972. https://doi.org/10.1109/ICICCS51141.2021.9432308

Trisanto, D., Rismawati, N., Mulya, M. F., & Kurniadi, F. I. (2021). Modified Focal Loss in Imbalanced XGBoost for Credit Card Fraud Detection. International Journal of Intelligent Engineering and Systems, 14(4), 350–358. https://doi.org/10.22266/ijies2021.0831.31

Wang, S., Ma, C., Xu, Y., Wang, J., & Wu, W. (2022). A Hyperparameter Optimization Algorithm for the LSTM Temperature Prediction Model in Data Center. Scientific Programming, 2022. https://doi.org/10.1155/2022/6519909

Downloads

Published

2025-04-30

Issue

Section

Articles