IMAGE CLASSIFICATION RECOGNITION OF GAMELAN MUSICAL INSTRUMENT TYPES USING CNN METHOD ANDROID BASED
DOI:
https://doi.org/10.58641/cest.v2i2.81Keywords:
Gamelan, CNN, image classification, cultural heritage, MobilnetV2Abstract
In the ever-evolving digital age, the use of digital images has become a significant and widespread phenomenon in various fields. Digital image processing and understanding has become an important requirement in various applications, including pattern recognition and computer vision. On the other hand, the sustainability and understanding of cultural treasures, such as Gamelan, is becoming increasingly crucial. UNESCO has recognized Gamelan as Indonesia's 12th World Intangible Cultural Heritage, reminding us of the responsibility to maintain and preserve this cultural heritage. In the digital era, where interest in traditional musical instruments is declining, Convolutional Neural Network (CNN) is implemented as a solution to classify Gamelan musical instrument types based on visual patterns in images. CNN, implemented in an Android system, showed good results with accuracy reaching 98% in the model test stage and 79% in the Android application test. The classification model using TensorFlow Lite, specifically MobilNetV2, was able to recognize Gamelan musical instrument types in the training dataset. However, it should be noted that this model is limited to that dataset. This research contributes to the merging of technology and cultural heritage, enabling the use of technology to enhance cultural understanding and sustainability.
References
Badan Pusat Statistik. 2022. Penduduk Kabupaten Wonosobo 2020-2022. Wonosobo: BPS Wonosobo
Dinas Pariwisata & Kebudayaan. (2023). Data Seni Budaya Kabupaten Wonosobo Tahun 2023.Tidak Dipublish
Hanin, S. N. (2023). Analisis Upaya Indonesia Dalam Pengusulan Gamelan Sebagai Warisan Budaya Takbenda Unesco Periode 2014-2021 (Bachelor's thesis, Program Studi Ilmu Hubungan Internasional Fakultas Ilmu Sosial Dan Ilmu Politik Universitas Islam Negeri Syarif Hidayatullah Jakarta).
Kementerian, & Kebudayaan, P. dan. (2021). Gamelan Jadi Warisan Budaya Dunia, Mendikbudristek Sampaikan Apresiasi Kepada Pegiat Budaya. SIARAN PERS Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi Nomor: 792/sipres/A6/XII/2021.
Pricillia, T. (2021). Perbandingan metode pengembangan perangkat lunak (waterfall, prototype, RAD). Jurnal Bangkit Indonesia, 10(1), 6-12.
Putra, W. S. E. (2016). Klasifikasi citra menggunakan convolutional neural network (CNN) pada caltech 101. Jurnal Teknik ITS, 5(1).
Sugiharto, D. O. (2018). Perancangan dan Implementasi Image Watermarking dengan Spread Spectrum Berbasis Android Platform (Doctoral dissertation, Program Studi Teknik Informatika FTI-UKSW).
Yuadi, I., Sos, S., & MT, M. (2023). Forensik Digital dan Analisis Citra. CV. AE MEDIA GRAFIKA.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Clean Energy and Smart Technology

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.