Quick Assessment of Bridge Performance Based on Dynamic Parameters Acquired with Smartphone Application

Authors

DOI:

https://doi.org/10.58641/cest.v2i2.86

Keywords:

bridge, dynamic, loading test, quick assessment, smartphone

Abstract

The road management regulation aims to achieve reliable and excellent road services that prioritize the interests of the community by ensuring the functional and competitive performance of the roads, as well as community participation in road management in accordance with Republic of Indonesia Law No. 2 of 2022. As part of the community, when crossing the Tegineneng Bridge on the Tegineneng-Sp. Tanjung Karang road section in Lampung Province and feeling discomfort from the bridge vibrations, participating individuals conducted vibration measurements using 2 smartphones. The gyroscopes in the smartphones, packaged within a g-force application, were capable of recording real-time vibrations in a user-friendly manner, and the output data was compatible with existing modal analysis software. Subsequently, vibration data recordings using the SSI algorithm yielded dynamic parameters such as a natural frequency of 2.009Hz and a damping ratio of 7.927%. The frequency of 2.009Hz for a span of 60m is lower compared to bridges of the same span from the dynamic bridge test regression equation in Indonesia, which is 2.347Hz. Under these conditions, it is estimated that the Tegineneng Bridge experienced minor structural damage with a damage level of 14.1% and its capacity is lower by 28.2% than the empirical estimate. The damping ratio exceeding 5% is estimated to be due to excessive energy dissipation through cracks in the concrete or through defects in the connections between steel frame elements. It is recommended that relevant stakeholders conduct a detailed inspection of the bridge to ensure its safety and undertake necessary measures to guarantee the safety of its users.

References

British Standards Institution. (2003). BS EN 1991-2:2003; Eurocode 1: Actions on structures - Part 2: Traffic loads on bridges. London: BSI.

Cantieni, R. (1983). Dynamic Load Tests on Highway Bridges in Switzerland. Dübendorf, Switzerland .

Di Matteo, A., Fiandaca, D., & Pirrotta, A. (2022). Smartphone-based bridge monitoring through vehicle–bridge interaction: analysis and experimental assessment. Journal of Civil Structural Health Monitoring, 12(6), 1329–1342. doi:10.1007/s13349-022-00593-1

Direktorat Jenderal Bina Marga. (2002). Penilaian Kondisi Jembatan untuk Bangunan atas dengan Cara Uji Getar. Pt T-05-2002-B. Pedoman Konstruksi dan Bangunan. Jakarta, Indonesia: Departemen Pekerjaan Umum Republik Indonesia.

Direktorat Jenderal Bina Marga. (2014). Laporan Uji Dinamik Jembatan. Jakarta.

Direktorat Jenderal Bina Marga. (2022). Pedoman Bidang Jalan dan Jembatan No. 01/ P/ BM/ 2022, Pedoman Pemeriksaan Jembatan. Jakarta: Kementerian Pekerjaan Umum dan Perumahan Rakyat, Republik Indonesia.

Ghalishooyan, M., & Shooshtari, A. (2015). Operational Modal Analysis Techniques and Their Theoretical and Practical Aspects: A Comprehensive Review and Introduction. In 6th International Operational Modal Analysis Conference, IOMAC’15. Gijón, Spain: IOMAC’15. Retrieved from https://www.researchgate.net/publication/281786721

Ho, S., Mohtadi, A., Daud, K., Leonards, U., & Handy, T. C. (2019). Using smartphone accelerometry to assess the relationship between cognitive load and gait dynamics during outdoor walking. Scientific Reports, 9(1). doi:10.1038/s41598-019-39718-w

Khoeri, H., Adeputra, G., & Sembada, Z. (2024). Pemeriksaan Pemenuhan Standar Getaran untuk Keselamatan dan Kenyamanan Masjid Apung Ziadatul Abrar dengan Smartphone. Jurnal Konstruksi, 22(1).

Khoeri, H., Alisjahbana, S. W., Widjajakusuma, J., & Najid, N. (2023). Estimasi Lendutan Pelat Untuk Menghitung Kapasitas Beban Dengan Akurasi Tinggi Menggunakan Uji Getar. Konstruksia, 14(2), 175–188. doi:10.24853/jk.14.2.175-188

Khoeri, H., Pradana, R., & Tasrim, M. (2024). Uji Beban Statik dan Dinamik untuk Asesmen Reliabilitas Jembatan Baja Komposit Bentang 20m, 25m dan 30m. Pasak: Jurnal Teknik Sipil Dan Bangunan , 1(2), 49–58. doi:10.32699

Matarazzo, T. J., Kondor, D., Milardo, S., Eshkevari, S. S., Santi, P., Pakzad, S. N., … Ratti, C. (2022). Crowdsourcing bridge dynamic monitoring with smartphone vehicle trips. Communications Engineering, 1(1), 29. doi:10.1038/s44172-022-00025-4

Matarazzo, T., Vazifeh, M., Pakzad, S., Santi, P., & Ratti, C. (2017). Smartphone data streams for bridge health monitoring. Procedia Engineering, 199, 966–971. doi:10.1016/j.proeng.2017.09.203

Menteri Pekerjaan Umum dan Perumahan Rakyat. Peraturan Menteri Pekerjaan Umum dan Perumahan Rakyat Republik Indonesia, Nomor 10 Tahun 2022 tentang Penyelenggaraan Keamanan Jembatan dan Jalan Terowongan (2022). Jakarta, Indonesia.

Murtosidi, I., Wahyudi, A., Soeherman, O., & Kurniawati, E. (2021). Penjelasan Umum Prosedur Pemeriksaan Jembatan. Jakarta, Indonesia: Kementerian Pekerjaan Umum dan Perumahan Rakyat, Direktotar Jenderal Bina Marga, Direktorat Bina Teknik Jalan dan Jembatan.

Paultre, P., Chaallal, O., & Proulx, J. (1992). Bridge dynamics and dynamic amplification factors — a review of analytical and experimental findings. Canadian Journal of Civil Engineering, 19(2), 260–278. doi:10.1139/l92-032

Presiden Republik Indonesia. Undang-Undang Republik Indonesia No 2 Tahun 2022 tentang Perubahan Kedua atas Undang-Undang No. 38 Tahun 2004 tentang Jalan (2022). Jakarta, Indonesia.

Wang, L., He, H., & Li, S. (2022). Structural vibration performance test based on smart phone and improved comfort evaluation method. Measurement, 203, 111947. doi:10.1016/j.measurement.2022.111947

Wilayah, D. P. dan P. (n.d.). Pedoman Penilaian Kondisi Jembatan untuk Bangunan Atas dengan Cara Uji Getar.

Zahid, F. Bin, Ong, Z. C., & Khoo, S. Y. (2020, August 1). A review of operational modal analysis techniques for in-service modal identification. Journal of the Brazilian Society of Mechanical Sciences and Engineering. Springer. doi:10.1007/s40430-020-02470-8

Zhang, D., Tian, J., & Li, H. (2020). Design and Validation of Android Smartphone Based Wireless Structural Vibration Monitoring System. Sensors, 20(17), 4799. doi:10.3390/s20174799

Downloads

Published

2024-04-30

Issue

Section

Articles